
CHEMISTRY: D. McLACHLAN

2 T. Tanada, Am. J. Botany, 38, 276-283, 1951, Fig. 4.
3 F. T. Haxo and L. R. Blinks, J. Gen. Physiol., 33, 389-422, 1950.
4Eugene I. Rabinowitch, Photosynthesis and Related Procerses (New York: Interscience

Publishers, Inc., 1951), Vol. 2, Part 1.
6 L. N. M. Duysens, Transfer of Excitation Energy in Photosynthesis (Utrecht: Maatschappij

v/h Kemink en Zoon N. V., 1952).
6 B. I. Stepanov, Izvest. Akad. Nauk S.S.S.R., Ser. Fyz., 20, 493, 1956; B. S. Neporent and

N. A. Borisevich, Izvest. Akad. Nauk S.S.S.R., Ser. Fyz., 20, 476, 1956; Doklady Akad. Nauk
S.S.S.R., 69, 695, 1954.

7Robert Emerson, Ruth Chalmers, Carl Cederstrand, and Marcia Brody, Science, 123, 673,
1956.

8 Robert Emerson and Ruth Chalmers, Plant Physiol., 30, 504-529, 1955.
9 Emerson and Lewis, Am. J. Botany, 30, 165-178, 1943, Fig. 6.
10 We are indebted to the Carnegie Institution of Washington (Mt. Wilson Observatory) for the

loan of the grating in the monochromator.
11 Emerson and Lewis, Am. J. Botany, 30, 165-178, 1943.
12 F. F. Rieke, "Quantum Efficiencies for Photosynthesis and Photoreduction in Green Plants,"

chap. 12 of Photosynthesis in Plants, ed. James Franck and W. E. Loomis (Ames: Iowa State
College Press, 1949), pp. 261-263.

13 B. Kok, Biochim. et biophys. acta, 3, 625-631, 1949.
14 J. A. Bassham, K. Shibata, and M. Calvin, Biochim. et biophys. acta, 17, 332-340, 1955.
15 Robert Emerson and Ruth V. Chalmers, "Research in Photosynthesis," Gatlinburg Sympo-

sium, 1955, ed. Hans Gaffron and others. New York: Interscience, 1957.
16 Q. Warburg, S. Krippahl, and W. Schroeder, Z. Naturforsch., lOB, 631-639, 1955.
17 Paul Latimer and Eugene Rabinowitch, J. Chem. Phys., 24, 480, 1956.
18 Emerson and Lewis, J. Gen. Physiol., 25, 579-595, 1942, Fig. 4.

THE SYMMETRY OF DENDRITIC SNOW CRYSTALS
BY DAN MCLACHLAN, JR.

STANFORD RESEARCH INSTITUTE, MENLO PARK, CALIFORNIA

Communicated by Sterling Hendricks, November 1, 1956

Snow crystals are of interest in two major respects: (a) meteorologically and
(b) artistically. The meteorological interest in snow crystals was greatly enhanced
by the work of Langmuirl 2 and Schaefer,36 who have done such extensive pioneer-
ing work on the seeding of clouds with material having a structure similar to that of
ice, with the object of gaining some control over rainfall throughout the country.
Their most effective seeding materials are frozen carbon dioxide and silver iodide.
From the artistic standpoint the interest in the beauty of snow crystals goes back
to the most primitive times, but we know that as early as 1555 Olaus Magnus,
Archbishop of Upsala, published a woodcut of a snow crystal in a book on the
general subject of "Natural Phenomena." The most authentic early drawings of
snow crystals were made by Scoresby7 in 1820. One of the first to use photography
for the study of shapes of snow crystals was Hellmann8 in 1893. The moat ex-
tensive work on the photography of snow crystals was carried out by W. A. Bentley,
of Jericho, Vermont, who apparently spent a good portion of his life at this task,
judging from his publications between 1901 and 1927.9 In 1931 W. J. Humphreys
assisted Bentley in compiling about 2,400 of Bentley's most interesting photographs
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into a beautifully arranged book. 10 All recent work on the study of snow crystals is
contained in a well-illustrated book by Nakaya."1 This book lists eighty-seven
references and is outstanding for its complete accounts of the experiments of
Nakaya and Hanajima in their artificial production of snow crystals to duplicate
almost every form produced naturally.
The present discussion deals with the artistic aspects of snow crystals, but it has a

scientific interest because it tries to explain the causes of the interesting shapes of
snow crystals and, furthermore, because these explanations may be carried over
into other fields wherein dendritic growth and branching are evident.

Three outstanding characteristics of dendritic snow crystals are immediately
apparent: (a) they exhibit a hexagonal pattern; (b) the crystals are all different in
shape, as though no simple law (such as governs "normal" growth) operated to
cause a relationship between the crystals; and (c) the branches of the six trees on the
dendritic crystals form six almost identical sets. The hexagonal character of snow-
flakes is in perfect accord with the crystal structure or atomic arrangement of the
water atoms in the ice crystal. Bernal and Fowler have worked out the structure
of ordinary ice, or ice J,12 while the structures of ice formed at high pressures have
been worked out by Megaw,13 Burton and Oliver,14 and McFarlan."5 The fact
that no two snowflakes are alike seems to surprise no one, since experience teaches
that the probability of a difference existing between two objects increases with the
complexity of detail in the objects. However, the fact that the six trees (see Fig. 6)
branching from a common center in a snow crystal are almost identical in spite of
their intricacy is a thing that excites the wonder of everyone.

It is the great similarity between the six parts of a dendritic branching snow
crystal that this paper is written to explain. The problem has often been expressed
by the question, " How does one branch of the crystal know what the other branches
are doing during growth?" Such regularity and symmetry are not so uncommon
among the plants, especially in the flowers and blossoms, and among the animals,
particularly in animals of the sea, where hormones and nerves provide a means of co-
ordinating the development and activities of living organisms (Thompson'6); but
for an inanimate organism to duplicate its development in growth in such minute
detail is not easily explained. The explanation of the co-ordination in growth
among the six branches of a snow crystal is based (in this discussion) upon the
theory that it is caused by standing waves of the thermal and acoustical type within
the crystal. We will first discuss the nature of the standing waves'7 within bodies
of various shapes and then discuss the kinetics of the deposition of molecules of H20
on the crystal.

The Nature of Standing Waves.-When an elastic substance is disturbed by
applying some force momentarily to some portion of it so as to displace that portion
from its equilibrium position, that portion of the substance will (as soon as the
force is removed) return to its initial position. But, owing to the momentum of that
portion, upon its arrival at the initial position, it will "coast" beyond equilibrium.
Again in a position of nonequilibrium due to "overshooting," the body again finds
itself elastically deformed and returns through the equilibrium position with mo-
mentum which carries it to the position of original displacement. This process
may be repeated many times, depending upon how rapidly the energy is dissipated
by friction, either internal or external. The number of times which this cycle is
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repeated per second is called the frequency v and depends upon the restoring force F
and the mass M of the displaced material; for simple systems this may be expressed
as

27r A|M' (1)
where v is the frequency. At the same time vibrations may be carried to other
portions of the body. The number of centimeters per second with which the
disturbance is transmitted from one portion of the body to another is called the
"velocity" of the wave.

If the body is not infinite in extent but is limited to some defined shape, the
waves will be reflected at the boundaries, and the reflected waves will mix with other
oncoming waves. There are certain frequencies of vibration whose values v are
such that there is a sort of coherence between all reflected waves and the oncoming
waves. For these frequencies, which are called "characteristic frequencies," so-
called "standing waves" result. The standing waves appear not to be moving.
Their apparent stationary condition results from the fact that the oncoming and
reflected waves have equal amplitude and equal frequencies and their velocities are
equal but in opposite directions. The frequencies of standing waves depend upon
the initial conditions of displacement and upon the shape and dimensions of the
body. These conditions are called "boundary conditions." From the boundary
conditions the characteristic frequencies may be solved for, provided that the
boundary conditions are sufficiently simple.'8 19 The shapes for which solutions
may be obtained are (a) linear systems, parallelograms, and parallelepipeds, to
which one-dimensional, two-dimensional, and three-dimensional Fourier series
apply, respectively; (b) circular systems and cylindrical systems, to which Bessel
functions apply; and (c) spherical systems, to which Legendre polynomials apply.

It may be assumed that a long, unbranched spine of a dendritic crystal of snow
complies very nearly to a one-dimensional system. When in transverse vibration,
the displacement +(x, t) of a point at distance x along its length at any instant of
time t can be expressed by the Fourier series

27rmx
+(x, t) = E Am cos cos 27r1'mt, (2)

m a
where a is the length of the spine, m is an integer, and Am is the amplitude of the
mth wave. In this respect the spine is analogous to a vibrating string free at both
ends. As is known to all musicians, the relative values of the amplitudes Am for
each m value (or harmonic) is influenced (1) by the position x, at which the string is
plucked, struck, or bowed and (2) by the position Xd at which the string is arrested
by the finger. The point of greatest interest to us is that, in a string of length a
which is arrested at the center, for example, all wave lengths a/m' are reduced in
amplitude, where m' is an odd integer; or, in general, if the string is damped at
some distance from the end expressed by a/g where g is any chosen integer, then the
string cannot vibrate at any wave lengths except those which are expressed by
Xp = 2a/gm", where m" is any integer.

If it is assumed that the arresting of a vibrating string by placing a finger on that
point is equivalent to loading the string at that point with a mass which is infinite in
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comparison to the density of the string, then it becomes of interest to know what
may happen if the added mass is finite. We shall not go into this matter, but
fortunately this problem has been worked out,' and we shall merely state the
results: (1) a mass of weight m attached to a string reduces the frequency of
vibration of all standing waves except those for which the point of attachment is a
node, and (2) the mass reduces the amplitude of vibration at the point of attach-
ment. As the mass is increased, the amplitudes and frequencies decrease, until at
infinite mass fully developed nodes are induced.
The two-dimensional standing waves, as observed on a rectangular drumhead,'8

are very convenient to study, because when such a drumhead is set into vibration by
striking, sawdust scattered upon the membrane is observed to accumulate upon the
nodal points or nodal lines. When such a drumhead is struck and then arrested at
some point, other points are observed to be induced nodes, as evidenced by the
accumulation of sawdust in small piles at these positions. Or, if the drumhead is
arrested by placing a straight edge one-third of the way along the a dimension,
then an induced nodal line is formed at 2a/3.

Examples of Branching in Snow Crystals.-The theory which we wish to present is
that snow crystals grow from the deposition of water molecules upon small nuclei of
ice which are under thermal vibration corresponding to a temperature of 250-
2730 K.; the molecules strike and bounce off the nuclei, with relatively few sticking;
the number of those which strike and stay to contribute to the size of the growing
crystal is greatly influenced by the frequency and amplitude of vibration at any
point on the crystal; if a portion of a spine or branch of a dendrite becomes more
heavily loaded than the surrounding portions, the vibrations are somewhat re-
stricted, as is a string with a mass attached; these loaded portions become more
loaded with further growth; therefore, the growth from the loaded point becomes a
runaway process, and thus branching occurs; finally, the loaded portion simulates a
node, and the induced nodes sponsor growth at other portions according to a defined
pattern.
To clarify the process described in the above paragraph, let us discuss a number

of the pictures from. the book by Bentley and Humphreys.10 First let us imagine
that Figure 1 is an enlarged photograph of a very small nucleus which in the later
stages of its growth has experienced "normal" growth for a sufficiently long time to
have established a "normal" hexagonal shape. If conditions were to change so as
to be conducive to dendritic growth,20 then the six corners would find themselves
receiving more molecules and losing more heat of crystallization than the flat
portions. If this situation prevailed, the corners would "sprout" dendrites, as
shown in Figure 2.

After a very much longer time the dendritic "sprouts" will have grown to quite
extended lengths, as shown in Figure 3. Up to this point, the growth of the
dendrites can be explained on the basis of the known theories.20 To account for the
branching, however, one must consider the standing-wave phenomena.

FIGS. 1-6.-Some typical snow crystals photographed by W. A. Bentley. (Reproduced by
permission from Snow Crystals, by Bentley and Humphreys. Copyright 1931, McGraw-Hill
Book Co.)
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Let us consider that each of the six spines in Figure 3 is an array of molecules2'
arranged in the order required by the structure of ice and that all the molecules are
in thermal agitation in a manner demanded by the theories of black-body radiation
and Planck's distribution law, but that the distribution of energies between the
modes of vibration is influenced byr the boundary conditions. If one of the spines
becomes loaded at some point, say one-fourth the distance from their point of
attachment, then nodes are induced at equal intervals along the spine. As shown in
Figure 4, these nodes will "sprout" dendritic branches that are equally spaced.
Figure 5 shows the equal spacing of the branches on a dendrite where the interval is
one-eleventh of the spine length, and the nuclear size is extremely minute.
The question may arise as to how the waves which stand in one of the six branches

are coupled with those in the other five branches. Experimentally one may build a
model of six such spines from thin drill-rod material and weld them together, then
place them on a thin dental rubber dam sheet. Sawdust may be used to study the
wave forms produced by vibrating them. The torque through the point of inter-
section transmits the same frequencies and induces the same nodes in all branches in
an identical manner.

Figure 6 is an interesting example of a crystal which changed its vibrational
modes. This crystal grew dendritically from the center 0 to the point S according
to some system of loading, then grew a slender spine from S to T, and then re-
branched systematically again. Also, one may notice secondary branches such as
the one marked B. Many of the secondary and tertiary branches have been
inhibited by interference or shielding by their neighbors.

Returning to Figure 1, which was chosen for its simplicity, we see markings which
indicate that it has formed complete hexagons at several stages in its development.
Bach time afters (or during) the filling-in process, changing conditions produced
further dendritic growth. Similar " filling-in" scars can be seen in Figure 2 at G'.
These markings on the interior of the crystals are almost as interesting as the

branching characteristics of snow crystals. The complicated markings such as are
shown in Figure 4 are a sort of a written record of the atmospheric conditions
through which the crystal has gone in its relatively long experience of having been
carried -up and down repeatedly by upcurrents and gravity between elevations at
which the temperature, humidity, and pressure differ extremely with altitude. A
study of these markings should eventually become valuable to meteorologists.
Nakaya1I and his co-workers have established, in their experiments on the synthetic
production Qf snow crystals, the conditions of ambient temperature, humidity, and
supercooling under which each of the various types of snow crystals is formed. If-it
can be assumed that natural snow crystals of a given type can be used as evidence of
the conditions in the air, then meteorology has a new tool.

In this discussion there is one point that has not been clarified. This point has
to do with the question, " What is the mechanism by which some point on a dendritic
spine becomes more heavily loaded with molecules than other points?" We shall
consider this point statistically.
Some Statistics of Snow Formation.-Let us consider some facts which might en-

able us to imagine what goes on in the atmosphere during the growth of a snow
crystal.
At 0° C., saturated air contains 4.835 gm. of water per cubic meter, according to

the Smithsonian tables. At 200 C. the air is saturated when there is only 0.892 gm.
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per cubic meter. This means that if saturated air at 00 C. is chilled to -20° C.,
about four-fifths of the suspended water molecules will precipitate as ice as fast as
these molecules can establish (or find) nuclei upon which to deposit. Expressed in
partial pressures, the 4.835 gm. of H20 per cubic meter is about 0.006 atmosphere,
or 4.56 mm. of mercury. This does not appear to be a very high pressure, but it
represents 1.6 X 1017 molecules of H20 per cubic centimeter mixed with about 200
times this many molecules of air. At this congestion, the water molecules are only
0.2 X 10-' millimeter apart. They do not have far to go to associate with one
another, and they should not require very long to accomplish much, since the H20
molecules are traveling at a mean velocity of 62,700 cm/sec. For example, if an
ice crystal is suspended in the saturated atmosphere at 00 C., it is bombarded with
water molecules at the rate of 2.5 X 1021 molecules per square centimeter per second,
that is, about '/250 mole/sec. This means that every 28 seconds there will be about
79 calories of heat deposited per square centimeter if every molecule sticks (this is
assuming a heat of sublimation of 675 cal/mole). This accumulation of heat would
raise the temperature and melt the crystal (79 cal/mole is the heat of fusion of
ice).
To be more precise, let us consider an actual snow crystal of over-all dimensions of

100 ,u or about '/lo mm. Assume that it is similar to the one pictured in Figure 3
having six spines, each 20 times as long as wide and about one-tenth as thick as
wide. Such a crystal has an area of 10-6 square centimeter. Such an area is bom-
barded with 2.5 X 1015 water molecules per second. Using the figure 1.4 X 101"
and the volume occupied by water molecules in ice, one concludes that the crystal
should grow at a rate of about one centimeter per second in all directions. This
velocity of growth is much more rapid than observed rates,6 since observed rates are
approximately 100 A in 30 seconds or 10-4 cm/sec. We are forced to conclude that
even at fast rates of growth only about four out of every thousand molecules which
strike the crystal surface stick; the other 996 bounce off.
As pointed out by private communication from Sterling B. Hendricks, the

present argument applies not only to the sublimation processes but also to the
surface migration of water molecules on ice. Murphy22 has shown that in the
bipedal random walk of water at 00 C. there are 105 skips along the surface for
each jump off the surface, and at - 100° C. the ratio is 108.
Now let us consider the vibrations within the ice crystal. The longest thermal

vibration in the crystal has a wave-length twice the length of the spine or about
I/io mm, that is, in the far infrared, not far from the black-body maximum at 00 C.;
and the shortest possible wave is twice the interatomic distance, or about 3 A,
that is, in the X-ray region and negligibly weak in intensity. Assuming that the
velocity of sound in ice is about 1,500 m/sec, we may calculate the lowest frequency
of vibration of a dendritic spine to be 1.5 X 107 and for the highest frequency 6.6 X
1012 cycles/sec. This means that even for the lowest possible frequency of oscilla-
tion of the spine of an ice crystal only about 10-7 second is required to complete a
wave cycle. Using the structure of ice, we may calculate the area of a unit cell of
the crystal to be about 33 X 10-16 square centimeter. Following, in our imagina-
tion, the oscillation of a unit cell back and forth once every 10-7 second, and an
exposed area of only 33 X 10-16 square centimeter, in an atmosphere where it is
being bombarded at a rate of 2.5 X 1022 times per second per square centimeter
with water molecules, we can calculate the number of bombardments per cycle per
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unit cell to be approximately 8. Since only one of these out of each thousand
sticks, we may conclude that, on the average, we must consider an expanse of about
300 unit cells to see one captured molecule per cycle at the slowest possible vibration
rate. For higher frequencies the times are shorter and the expanse (over which one
may expect an average of one capture per cycle) is greater.

This means that, while we may calculate the average number of molecules cap-
tured by a given area per second, we have no means of saying for certain that this
really happens. Watching a single area in which we expect one molecule to be
captured and confining our observations to the short time of one cycle, we have a
good probability of seeing no molecules captured, or we have a fair probability of
seeing two captured. According to our earlier study of vibrating strings, if two are
captured, the system is loaded more heavily in this region than the average, and
further captures are more likely on the next cycle. The runaway process has
begun!

Fortunately, the probability of capturing any portion of the expected number of
molecules is a problem in a field of statistics which has been worked out.23 In
calculating the deviations from expectation, Poisson developed an equation which
has proved reliable in many problems such as production control, plant breeding,
and other fields where data can be collected:

P(n) ee-' (3)
n!

where P(n) represents the probability of n molecules falling on an area where e
molecules were expected to fall. This equation can be used to calculate the proba-
bility that any chosen area of a crystal may become abnormally overloaded with
molecules during one vibration cycle. From a table of Poisson probability values23
(p. 458), we see that, for e = 1, the probability of getting what we expect is about
the same as the probability of getting none. The probability of getting 2 is about
one-half that of getting 1, and the probabilityof getting 3 is about one-sixth. The
maximum probability is always on the expected number; for example, when E = 5
the maximum probability is .175 for n = 5, and when e = 10 the maximum proba-
bility is .125 in the neighborhood of n = 10. The tables teach us that if we expect
1 molecule per unit area for a given cycle, we have a probability of about 1 out of 3
of getting it; if we expect 5 molecules, we have a probability of 1 out of 5 of getting
it, and if we expected 10, our probability is 1 out of 8. The total probability is unity
in any set, but the bulk of the probability is scattered over the many unexpected
groupings of events.

This all means that, according to statistics, an uneven loading is very likely in a
single vibration of a dendritic spine, and branching is easily initiated.
An interesting experiment would be to grow a piezoelectric crystal while vibrat-

ing, to see whether fins could be included at the nodes of the vibrations.

The author is indebted to the Stanford Research Institute and the Engineering
Experiment Station of the University of Utah for facilities in carrying out this
work. The author is also indebted to the McGraw-Hill Book Company, Inc., for
permission to use selected figures from the book by Bentley and Humphreys.10
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EXCITATIONS AND POLYMERIZATION
BY ALBERT SZENT-GYORGYI

INSTITUTE IOR MUSCLE RESEARCH, MARINE BIOLOGICAL LABORATORY, WOODS HOLE, MASSACHUSETTS

Communicated November 26, 1966

As described previously,' fluorescent substances, if frozen in water, show peculiar
forms of long-lived electronic excitations. It has been suggested that the long
lifetime of these excitations is due to their triplet state. It has also been shown
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